Abstract
Hydrogels have emerged as a promising material for the removal of heavy metal ions from contaminated water owing to their high water absorption capacity and biocompatibility. Despite notable advancements in improving the adsorptive capacity of hydrogels, the demand for a more efficient structure persists. Here, we explore the ion adsorption performance of crosslinked hydrogels based on chitosan and sodium alginate with various ratios of carbon nanotubes (CNT) and graphene platelets (GNP). This study highlights the adsorption of chromium ions and the thermal stability of hydrogels for pure, single-particle, and hybrid nanocomposites. The results depict a uniform microstructure attained when CNT, GNP, or both are implemented into the hydrogel due to the strong interaction of functional moieties. The incorporation of CNT and GNP manipulates the crystalline structure of the hydrogels, lowering their crystallinity by around 28% and 13%, respectively. The synergistic effect of CNT and GNP in hybrid hydrogels raises the decomposition temperature by 16%, indicating a favorable interplay interaction between nanoparticles and polymers. Calculations of the adsorption capacity accentuate such a mutual effect between CNT and GNP in various loads of ion capture from aqueous solutions. Kinetic models fitted to the hydrogel nanocomposites reveal that the pseudo-second-order model aligns better with the experimental data in comparison to the pseudo-first-order and intraparticle diffusion models, addressing the adsorption mechanisms while capturing chromium ions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have