Abstract

A peripheral nerve graft model was used to examine axonal growth after a unilateral cervical (C) contusion injury in adult rats and to determine if manipulation of an injury site prior to transplantation affects spontaneous behavioral recovery. After a short delay (7 d) the epicenter of a C4 contusion was exposed and aspirated without harming the cavity walls followed by apposition with one end of a pre-degenerated tibial nerve to the rostral cavity wall. After a longer delay (28 d) the aspirated cavity was treated with GDNF to promote regeneration by chronically injured neurons. In both groups forelimb and hindlimb locomotor scores decreased significantly 2 d after lesion site manipulation, but by 7 d, the forelimb score was not different from the pre-manipulation score. There was no significant difference in grid walking or grip strength scores for the affected forelimb in either group 7 d after contusion vs. 7 d after manipulation. Over 1500 brain stem and propriospinal neurons grew axons into the graft with either delay. These results demonstrate that a contusion injury site can be manipulated prior to transplantation without causing long-lasting forelimb or hindlimb behavioral deficits and that peripheral nerve grafts support axonal growth after acute or chronic contusion injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call