Abstract

Injury at any level of the spinal cord can impair respiratory motor function. Indeed, complications associated with respiratory function are the number one cause of mortality in humans following spinal cord injury (SCI) at any level of the cord. This review is aimed at describing the effect of SCI on respiratory function while highlighting the recent advances made by basic science research regarding the neural regulation of respiratory function following injury. Models of SCI that include upper cervical hemisection and contusion injury have been utilized to examine the underlying neural mechanisms of respiratory control following injury. The approaches used to induce motor recovery in the respiratory system are similar to other studies that examine recovery of locomotor function after SCI. These include strategies to initiate regeneration of damaged axons, to reinnervate paralyzed muscles with peripheral nerve grafts, to use spared neural pathways to induce motor function, and finally, to initiate mechanisms of neural plasticity within the spinal cord to increase motoneuron firing. The ultimate goals of this research are to restore motor function to previously paralyzed respiratory muscles and improve ventilation in patients with SCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.