Abstract

Mesoscale hydrodynamic calculations have been conducted in order to gain further insight into the dynamic compaction characteristics of granular ceramics. With a mesoscale approach each individual grain, as well as the porosity, is modeled explicitly; the bulk behavior of the porous material can be resolved as a result. From these calculations bulk material characteristics such as shock speed, stress and density have been obtained and compared with experimental results. A parametric study has been conducted in order to explore the variation and sensitivity of the computationally derived dynamic response characteristics to micro-scale material properties such as Poisson's ratio, dynamic yield and tensile failure strength; macro-scale parameters such as volume fraction, particle morphology and size distribution were explored as well. The results indicate that the baseline bulk Hugoniot response under-predicts the experimentally measured response. These results are sensitive to the volume fraction, dynamic yield strength and particle arrangement, somewhat sensitive to failure strength and insensitive to the micro-scale Hugoniot and grain morphology. A discussion as to the shortcomings in the mesoscale modeling technique, as well as future considerations, is included.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call