Abstract

This study tested the effectiveness of using dynamic yield strength (DYS) and shear-cell experiments to calibrate the following discrete-element-method (DEM) parameters: surface energy, and the coefficients of sliding and rolling friction. These experiments were carried out on cohesive granules, and DEM models were developed for these experiment setups using the JKR cohesion contact model. Parameter-sensitivity analysis on the DYS model showed that the DYS results in the simulations were highly sensitive to surface energy and were also impacted by the values of the two friction coefficients. These results indicated that the DYS model could be used to calibrate the surface energy parameter once the friction coefficients were fixed. Shear-cell sensitivity analysis study found that the influence of surface energy on the critical-state shear value cannot be neglected. It was inferred that the shear-cell model has to be used together with the DYS model to identify the right set of friction parameters. Next, surface energy was calibrated using DYS simulations for a chosen set of friction parameters. Calibrations were successfully conducted for simulations involving experimentally sized particles, scaled-up particles, a different shear modulus, and a different set of friction parameters. In all these cases, the simulation DYS results were found to be linearly correlated with surface energy and were within 5% of the experimental DYS result. Shear-cell simulations were then used to compare calibrated surface-energy values for the scaled-up particles with the experimentally sized particles. Both the simulations resulted in similar critical-state shear values. Finally, it was demonstrated that a combination of DYS and shear-cell simulations could be used to compare two sets of friction parameters and their corresponding calibrated surface energy values to identify the set of parameters that better represent the flow behavior demonstrated by the experimental system.

Highlights

  • Introduction and ObjectivesCohesive granular materials are encountered in a variety of industries, such as food processing, agriculture, geotechnical industries, and pharmaceuticals

  • Dynamic-yield-strength and shear-cell experiments were performed on cohesive granular material

  • discrete-element method (DEM) models were developed for this dynamic-yield-strength and shear-cell equipment using the JKR cohesion contact model

Read more

Summary

Introduction

Cohesive granular materials are encountered in a variety of industries, such as food processing, agriculture, geotechnical industries, and pharmaceuticals. To transport and storage operations [7] The flow of these materials can influence product quality, production rate, and the type of manufacturing operations utilized in product design [8]. This makes the study of cohesive granular flow an essential area of research. It can be used to study the effects of changes in material properties, particle sizes, equipment design, and operating conditions [10], making it a useful tool to gain insight related to the flow of particles in equipment

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call