Abstract
The article presents theoretical basis for the industry-based approach for finite element modeling of stable crack growth in the main parts of an aviation gas turbine engine. An axial compressor disc is used as an example. Parameters of typical FE-models applied are provided. In addition, some effective practices of FE-modeling representing the novelty of this work are described: crack evolution increment under-relaxation and automation of the process of constructing a new crack front. Some simulation results are presented demonstrating implementation of the approach steps and benefits gained from the application of the listed features. Under-relaxation ensures maintaining the stability of a numerical solution for a significantly larger crack increment size. This leads to essential effort decrease as a result of reducing the total number of simulation cycles required. Automatic construction of a new crack front allows significant improvement in crack representation accuracy during the simulation process due to the greater number of points for which crack front evolution is determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: VESTNIK of Samara University. Aerospace and Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.