Abstract

We investigate the low-temperature electrical and thermal transport properties in atomically precise metallic heterostructures involving strongly correlated electron systems. The model of the Mott-insulator/band-insulator superlattice was discussed in the framework of the slave-boson mean-field approximation and transport quantities were derived by use of the Boltzmann transport equation in the relaxation-time approximation. The results for the optical conductivity are in good agreement with recently published experimental data on ${({\text{LaTiO}}_{3})}_{N}/{({\text{SrTiO}}_{3})}_{M}$ superlattices and allow us to estimate the values of key parameters of the model. Furthermore, predictions for the thermoelectric response were made and the dependence of the Seebeck coefficient on model parameters was studied in detail. The width of the Mott-insulating material was identified as the most relevant parameter, in particular, this parameter provides a way to optimize the thermoelectric power factor at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call