Abstract

Block copolymers (BCPs) confined in evaporative emulsions can assemble into ellipsoidal particles when solvent evaporation is faster than polymer diffusion within the droplet. Here, we report the synthesis of monodisperse, ellipsoidal polystyrene-block-1,4-polybutadiene (PS-b-PB) BCP particles with tunable aspect ratios (ARs) ranging from 1.0 to 2.2 and particle sizes ranging from 0.1 to 5 μm by membrane emulsification and subsequent solvent evaporation. The ratio of the propagation distance (lp) of ordered BCP domains perpendicular to the particle surface to the particle size (rBCP), or lp/rBCP, was found to be a critical parameter dictating the particle shape, where lp/rBCP > 1 yielded ellipsoids. We show that the AR of colloidal BCP ellipsoids can be precisely controlled by varying particle size (i.e., membrane pore size) and BCP molecular weight, as predicted by theoretical calculations of the free energy of particle elongation including three terms: (1) the interfacial energy between the two blocks o...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call