Abstract

Aspect-based sentiment analysis aims to predict the sentiment polarity of each specific aspect term in a given sentence. However, the previous models ignore syntactical constraints and long-range sentiment dependencies and mistakenly identify irrelevant contextual words as clues for judging aspect sentiment. In addition, these models usually use aspect-independent encoders to encode sentences, which can lead to a lack of aspect information. In this paper, we propose an aspect-gated graph convolutional network (AGGCN), that includes a special aspect gate designed to guide the encoding of aspect-specific information from the outset and construct a graph convolution network on the sentence dependency tree to make full use of the syntactical information and sentiment dependencies. The experimental results on multiple SemEval datasets demonstrate the effectiveness of the proposed approach, and our model outperforms the strong baseline models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.