Abstract

Aspect-based sentiment analysis is a fine-grained sentiment analysis task, which needs to detection the sentiment polarity towards a given aspect. Recently, graph neural models over the dependency tree are widely applied for aspect-based sentiment analysis. Most existing works, however, they generally focus on learning the dependency information from contextual words to aspect words based on the dependency tree of the sentence, which lacks the exploitation of contextual affective knowledge with regard to the specific aspect. In this paper, we propose a graph convolutional network based on SenticNet to leverage the affective dependencies of the sentence according to the specific aspect, called Sentic GCN. To be specific, we explore a novel solution to construct the graph neural networks via integrating the affective knowledge from SenticNet to enhance the dependency graphs of sentences. Based on it, both the dependencies of contextual words and aspect words and the affective information between opinion words and the aspect are considered by the novel affective enhanced graph model. Experimental results on multiple public benchmark datasets illustrate that our proposed model can beat state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.