Abstract

A synthesis approach based on Answer Set Programming (ASP) for heterogeneous system-on-chips to be used in distributed camera networks is presented. In such networks, the tight resource limitations represent a major challenge for application development. Starting with a high-level description of applications, the physical constraints of the target devices, and the specification of network configuration, our goal is to produce optimal computing infrastructures made of a combination of hardware and software components for each node of the network. Optimization aims at maximizing speed while minimizing chip area and power consumption. Additionally, by performing the architecture synthesis simultaneously for all cameras in the network, we are able to minimize the overall utilization of communication resources and consequently reduce power consumption. Because of its reconfiguration capabilities, a Field Programmable Gate Array (FPGA) has been chosen as the target device, which enhances the exploration of several design alternatives. We present several realistic network scenarios to evaluate and validate the proposed synthesis approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.