Abstract

Triple-negative breast cancer (TNBC) accounts for 10-20% of all human ductal adenocarcinomas and has a poor prognosis relative to other subtypes because of its high propensity to develop metastases. Here, the anticancer effects of asiaticoside (AC) against TNBC and the possible underlying mechanism were examined. We found that AC inhibited the TGF-β1 expression and the SMAD2/3 phosphorylation in TNBC cells, thereby impairing the TGF-β/SMAD signaling. AC inhibited the migration, invasion, and epithelial-mesenchymal transition (EMT) of TNBC cells by suppressing the TGF-β/SMAD signaling. Meanwhile, AC inhibited the lung metastasis of TNBC cells in vivo and the expression of p-SMAD2/3 and vimentin, and increased the expression of E-cadherin and ZO-1 in the lung. Peroxisome proliferator activated receptor gamma (PPARG) was identified as a potential target of AC. AC increased PPARG expression, while PPARG knockdown attenuated the therapeutic effect of AC. AC-mediated PPARG overexpression suppressed the transcription of P2X purinoceptor 7 (P2RX7). The restoration of P2RX7 reversed the therapeutic effect of AC. These results suggested that AC blocked P2RX7-mediated TGF-β/SMAD signaling by increasing PPARG expression, thereby suppressing EMT in TNBC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.