Abstract

The Japanese satellite ASCA carries X-ray detectors which combine excellent sensitivity and high spectral resolution. We observed the young, rapidly-rotating K dwarf AB Doradus with ASCA in November 1993. The star’s X-ray flux was essentially steady for the first half of the observation, and then a series of flares occurred during the second half. The flares showed rise times of 30 minutes and decay times of several hours. The quiescent X-ray luminosity was 2 × 1030 ergs s−1 (0.5-10 keV). At the flare peaks, LX(> 0.5 keV)/Lbol = .002.AB Dor has a relatively high count rate in the ASCA data and we can obtain high-quality spectra for different periods of the light curve. In Fig. 1 we present spectra corresponding to the period of quiescence, the rising phase and peak of each of the three flares combined, and the decay periods of each of the flares combined. The rise/peak curve (upper) has been multiplied by 2 for purposes of display. We have subtracted the quiescent spectrum from the flare spectra (i.e., used it as a background spectrum) for this display and subsequent analysis.The detailed differences between these spectra display the importance of the high spectral resolution provided by ASCA. One important difference, not readily evident in this figure, is the Fe K line complex at 6.4-6.7 keV. This line, a diagnostic of hot plasma, is strong in the rise/peak spectrum, moderate in the decay spectrum and weak in the quiescent spectrum. A time profile of the counts in this energy range shows little significant emission during the quiescent periods but strong emission at the flare peaks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call