Abstract

BackgroundEarly detection of asbestosis is important; hence, quick and accurate diagnostic tools are essential. This study aimed to develop an algorithm that combines lung segmentation and deep learning models that can be utilized as a clinical decision support system (CDSS) for diagnosing patients with asbestosis in segmented computed tomography (CT) images. MethodsWe accurately segmented the lungs in CT images of patients examined at Seoul St. Mary’s Hospital using a threshold-based method. Lungs with asbestosis and normal lungs were classified by applying the segmented image to the long-term recurrent convolutional network deep learning model. Performance was evaluated using the area under the receiver operating characteristic curve (AUROC) and F1 score from the test data. ResultsThe algorithm developed using the DenseNet201pre-trained model showed excellent performance, with a sensitivity of 0.962, specificity of 0.975, accuracy of 0.970, AUROC of 0.968, and F1 score of 0.961. ConclusionsWe developed an algorithm with significantly better diagnostic accuracy than a radiologist (0.970 vs. 0.73–0.79). Our developed algorithm is expected to be an excellent support tool if used as a CDSS to diagnose asbestosis using CT images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.