Abstract

Pollution caused by oil spills does irreversible harm to marine biosystems. To find maritime oil spills, Synthetic Aperture Radar (SAR) has emerged as a crucial mean. How to accurately distinguish oil spill areas from other types of areas is a committed step in detecting oil spills. Owing to its capacity to extract multiscale features and its distinctive decoder, the Deeplabv3+ framework has been developed into an excellent deep learning model in field of picture segmentation. However, in some SAR pictures, there is a lack of clarity in the segmentation of oil film edges and incorrect segmentation of small areas. In order to solve these problems, an improved network, named ASA-DRNet, has been proposed. Firstly, a new structure which combines an axial self-attention module with ResNet-18 is proposed as the backbone of DeepLabv3+ encoder. Secondly, a atrous spatial pyramid pooling (ASPP) module is optimized to improve the network’s capacity of extracting multiscale features and to increase the speed of model calculation and finally merging low-level features of different resolutions to enhance the competence of network to extract edge information. The experiments show that ASA-DRNet obtains the better results compared to other neural network models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call