Abstract

Lichen secondary metabolites are well explored medicinal agents with diverse pharmacological properties. One of the important antibiotic lichen secondary metabolites is usnic acid. Its diverse medicinal profiles prompted us to explore it as a potential antitubercular molecule. Towards this direction, continuing our efforts on the discovery and development of new analogs with potent antitubercular properties we designed, synthesized, and evaluated a set of 37 usnic acid enaminone-coupled aryl-n-hexanamides (3-39). The study yielded a 3,4-dimethoxyphenyl compound (13, 5.3µM) as the most active anti-TB molecule. The docking studies were performed on 7 different enzymes to better understand the binding modes, where it was observed that compound 13 bound strongly with glucose dehydrogenase (Gscore: -9.03). Further antibacterial investigations revealed compound 2 with potent inhibition on Salmonella typhi and Bacillus subtilis (MIC 3µM) and MIC values of 7 and 14µM on Streptococcus mutans and Escherichia coli respectively. Compound 19 (3-F-5-CF3-phenyl) displayed encouraging antibacterial profiles against E. coli, S. typhi and S. mutans with MIC values of 10µM respectively. Interestingly, compound 20 (2,6-difluorophenyl) also displayed good antibacterial activity against E. coli with an MIC value of 6µM. These encouraging pharmacological results will help for better designing and developing usnic acid-based semi-synthetic derivatives as potential antimicrobial agents. A set of 37 new usnic acid enaminone-coupled aryl-n-hexanamides were synthesized and evaluated as potential antimicrobial agents. Compound 13 was identified as the most active antitubercular molecule. 13 was further docked against 7 different enzymes of tuberculosis. The molecule displayed maximum binding energy with the enzyme Glucose dehydrogenase (Gscore: - 9.03), indicating that these hexanamides possibly act by inhibiting the glucose metabolic pathway of the bacterium. Surprisingly, the intermediate hexanoic acid 2 was identified as potent antibacterial agent, acting on both gram-positive and gram-negative bacterial strains (3-14μM). The active compounds may be subjected to structural iterations to develop further leads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.