Abstract
This research provides a study on how the weights of artificial neural networks (ANNs) can be automatically updated by applying bio-inspired algorithms, particularly using the particle swarm optimisation (PSO) algorithm, grasshopper optimisation algorithm (GOA) and grey wolf optimisation (GWO). These evolutionary computation algorithms were used to evolve the synaptic weights of ANNs to find a particular architecture of ANNs. The developed nonlinear models were targeted to the identification of a particular nonlinear prediction system, an industrial winding process, as a case study. These new models were referred, respectively, to as ANN-PSO, ANN-GOA and ANN-GWO. The proposed models were compared with other linear and nonlinear conventional models including least square error and multiple nonlinear regression methods, respectively, as well as other state-of-the-art models including multilayer perceptron-type NNs, radial basis function and recurrent local linear neuro-fuzzy. The performance of the developed models was assessed using several metric criteria. Comparison of the proposed ANN-PSO, ANN-GOA and ANN-GWO models with other traditional and state-of-the-art models asserts the efficacy of the proposed modelling approaches.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have