Abstract
The purpose of the present study was to estimate dimensional measure properties of T-shirts made up of Single Jersey and interlock fabrics through Artificial Neural Networks (ANN). To that end, 72 different types of t-shirts were manufactured under 2 different fabric groups, each was consisting of 2 groups: one with elastane and the other without. Each of these groups were manufactured from six different materials in three different densities through two different knitting techniques of single jersey and interlock. For estimation of dimensional changes in these T-shirts, models including feed-forward, back-propagated, the momentum learning rule and sigmoid transfer function were utilized. As a result of the present study, the ANN system was found to be successful in estimation of pattern measures of garments. The prediction of dimensional properties produced by the neural network model proved to be highly reliable (R2> 0.99).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.