Abstract
The flow characteristics in open channel junctions are of great interest in hydraulic and environmental engineering areas. This study investigates the capacity of artificial neural network (ANN) models for representing and modelling the velocity distributions of combined open channel flows. ANN models are constructed and tested using data derived from computational-fluid-dynamics models. The orthogonal sampling method is used to select representative data. The ANN models trained and validated by representative data generally outperform those by using random data. Sobols' sensitivity analysis is performed to investigate contributions of different uncertainty sources to model performance. Results indicate that the major uncertainty source is from ANN model parameter initialization. Hence an ANN model training strategy is designed in order to reduce the main uncertainty source: models are trained for many runs with random model parameter initializations and the model with the best performance is adopted.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have