Abstract

Forecasting thunderstorm is one of the most difficult tasks in weather prediction, due to their rather small spatial and temporal extension and the inherent nonlinearity of their dynamics and physics. Accurate forecasting of severe thunderstorms is critical for a large range of users in the community. In this paper, experiments are conducted with artificial neural network model to predict severe thunderstorms that occurred over Kolkata during May 3, 11, and 15, 2009, using thunderstorm affected meteorological parameters. The capabilities of six learning algorithms, namely, Step, Momentum, Conjugate Gradient, Quick Propagation, Levenberg-Marquardt, and Delta-Bar-Delta, in predicting thunderstorms and the usefulness for the advanced prediction were studied and their performances were evaluated by a number of statistical measures. The results indicate that Levenberg-Marquardt algorithm well predicted thunderstorm affected surface parameters and 1, 3, and 24 h advanced prediction models are able to predict hourly temperature and relative humidity adequately with sudden fall and rise during thunderstorm hour. This demonstrates its distinct capability and advantages in identifying meteorological time series comprising nonlinear characteristics. The developed model can be useful in decision making for meteorologists and others who work with real-time thunderstorm forecast.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.