Abstract

A correct determination of irrigation water requirements necessitates an adequate estimation of reference evapotranspiration (ETo). In this study, monthly ETo is estimated using artificial neural network (ANN) models. Eleven combinations of long-term average monthly climatic data of air temperature (min and max), wind speed (WS), relative humidity (RH), and solar radiation (SR) recorded at nine different weather stations in Tunisia are used as inputs to the ANN models to calculate ETo given by the FAO-56 PM (Penman–Monteith) equation. This research study proposes to: (i) compare the FAO-24 BC, Riou, and Turc equations with the universal PM equation for estimating ETo; (ii) compare the PM method with the ANN technique; (iii) determine the meteorological parameters with the greatest impact on ETo prediction; and (iv) determine how accurate the ANN technique is in estimating ETo using data from nearby weather stations and compare it to the PM method. Four statistical criteria were used to evaluate the model’s predictive quality: the determination coefficient (R2), the index of agreement (d), the root mean square error (RMSE), and the mean absolute error (MAE). It is quite evident that the Blaney–Criddle, Riou, and Turc equations underestimate or overestimate the ETo values when compared to the PM method. Values of ETo underestimation ranged from 1.9% to 66.1%, while values of overestimation varied from 0.9% to 25.0%. The comparisons revealed that the ANN technique could be adeptly utilized to model ETo using the available meteorological data. Generally, the ANN technique performs better on the estimates of ETo than the conventional equations studied. Among the meteorological parameters considered, maximum temperature was identified as the most significant climatic parameter in ETo modeling, reaching values of R and d of 0.936 and 0.983, respectively. The research showed that trained ANNs could be used to yield ETo estimates using new data from nearby stations not included in the training process, reaching high average values of R and d values of 0.992 and 0.997, respectively. Very low values of MAE (0.233 mm day−1) and RMSE (0.326 mm day−1) were also obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.