Abstract
Biological experiments for developing efficient cancer therapeutics require significant resources of time and costs particularly in acquiring biological image data. Thanks to recent advances in AI technologies, there have been active researches in generating realistic images by adapting artificial neural networks. Along the same lines, this paper proposes a learning-based method to generate images inheriting biological characteristics. Through a statistical comparison of tumor penetration metrics between generated images and real images, we have shown that forged micrograph images contain vital characteristics to analyze tumor penetration performance of infecting agents, which opens up the promising possibilities for utilizing proposed methods for generating clinically meaningful image data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.