Abstract

The current work aims to design a computational framework based on artificial neural networks (ANNs) and the optimization procedures of global and local search approach to solve the nonlinear dynamics of the spread of COVID-19, i.e., the SEIR-NDC model. The combination of the Genetic algorithm (GA) and active-set approach (ASA), i.e., GA-ASA, works as a global-local search scheme to solve the SEIR-NDC model. An error-based fitness function is optimized through the hybrid combination of the GA-ASA by using the differential SEIR-NDC model and its initial conditions. The numerical performances of the SEIR-NDC nonlinear model are presented through the procedures of ANNs along with GA-ASA by taking ten neurons. The correctness of the designed scheme is observed by comparing the obtained results based on the SEIR-NDC model and the reference Adams method. The absolute error performances are performed in suitable ranges for each dynamic of the SEIR-NDC model. The statistical analysis is provided to authenticate the reliability of the proposed scheme. Moreover, performance indices graphs and convergence measures are provided to authenticate the exactness and constancy of the proposed stochastic scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.