Abstract

In this study, the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks (ANNs) along with the hybridization procedures of global and local search approaches. The global search genetic algorithm (GA) and local search sequential quadratic programming scheme (SQPS) are implemented to solve the nonlinear Liénard model. An objective function using the differential model and boundary conditions is designed and optimized by the hybrid computing strength of the GA-SQPS. The motivation of the ANN procedures along with GA-SQPS comes to present reliable, feasible and precise frameworks to tackle stiff and highly nonlinear differential models. The designed procedures of ANNs along with GA-SQPS are applied for three highly nonlinear differential models. The achieved numerical outcomes on multiple trials using the designed procedures are compared to authenticate the correctness, viability and efficacy. Moreover, statistical performances based on different measures are also provided to check the reliability of the ANN along with GA-SQPS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.