Abstract

In this research work, the M-shaped cantilever piezoelectric energy harvester is modeled and optimized using advanced artificial intelligence algorithms. The proposed harvester adopts a single structure geometrical configuration in which two secondary beams are being connected to the principal bimorph. Finite element analysis is carried out on COMSOL Multiphysics to analyze the efficiency of the proposed energy harvester. The influence of frequency, load resistance, and acceleration on the electrical performance of the harvester is numerically investigated to enhance the bandwidth of the piezoelectric vibrational energy harvester. Numerical analysis is also utilized to obtain the iterative dataset for the training of the artificial neural network. Furthermore, a genetic multi-objective optimization approach is implemented on the trained artificial neural network to obtain the optimal parameters for the proposed energy harvester. It is observed that optimization using modern artificial intelligence approaches implies nonlinearities of the system and therefore, machine learning-based optimization has shown more convincing results, as compared to the traditional statistical methods. Results revealed the maximum output values for the voltage and electrical power are 15.34 V and 4.77 mW at 51.19 Hz, 28.09 k[Formula: see text], and 3.49 g optimal design input parameters. Based on the outcomes, it is recommended to utilize this reliable harvester in low-power micro-devices, electromechanical systems, and smart wearable devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call