Abstract
Water quality plays an important role in aquaculture. The operation of a freshwater aquaculture fish farming is highly dependent on the ability to understand, monitor, and control the physical and chemical constituents of the water. pH and total ammonia nitrogen (TAN) levels are two critical water quality parameters that affect fish growth rate and health. However, pH and TAN levels are affected by uncontrollable factorse.g.weather, temperature, and biological processes occurring in the water. Therefore, it is important to monitor changes in pH and TAN levels frequently to maintain optimal conditions for freshwater habitats. Near infrared spectroscopy (NIR) has been extensively investigated as an alternative measurement approach for rapid quality control without sample preparation. Therefore, this research aims to evaluate the feasibility of machine learning combined with NIR light in predicting the water pH and TAN values of a fish farming system. The proposed system contains three main components i.e.a multi-wavelength light emitting diode (LED), a light sensing element, and a machine learning model i.e.artificial neural network (ANN). First, the transmitted NIR light with different wavelengths of water samples was measured using the proposed system. Then, the actual pH and TAN values of the water samples were quantified using conventional methods. Next, ANN was used to correlate the measured NIR transmittance with the pH and TAN values. The results show that ANN with four hidden neurons achieved the best prediction performance with a mean square error (MSE) of 0.1466 and 0.3136 and a correlation coefficient (R) of 0.8398 and 0.9560 for the pH and TAN predictions, respectively. These results show that ANNcoupled with NIR light can be promisingly developed for in situ water quality prediction without sample preparation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.