Abstract

Artificial muscles (bending or linear) from films of conducting polymers are faradic and biomimetic gel motors consuming the same charge to move through the same space in a specific electrolyte. The driven volume variation of the film requires the exchange with the electrolyte of a number of counterions, defined by the charge, and solvent molecules during reactions. Working in aqueous solution with different anions using bilayer (polypyrrole/tape) bending artificial muscles, the charge consumed to describe a constant angle changes with the anion. Volume variations in the polypyrrole film due to the anionic exchange are calculated from the involved charge and the crystallographic radius of every anion. A parallel exchange of water molecules is required to explain the described angles. The number of solvent molecules exchanged between the polymeric membrane and the electrolyte at the same time that an anion (apparent solvation number) or when an electron was extracted from the chains (apparent hydration num...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.