Abstract
Renal dysfunction is one of the most common complications of liver cirrhosis and is associated with increased morbidity and mortality. However, no available technology can simultaneously support liver and renal function in these patients. The aim of this study was to evaluate the safety and efficacy of an artificial liver and renal support system in cynomolgus monkeys with surgery-induced ARF. The ARF model was established by ligature of bilateral renal arteries in eight cynomolgus monkeys, which were randomly divided into a treatment group (n = 4) and control group (n = 4). Biochemical indexes were determined before and after surgery. Blood endotoxin levels, biochemical indexes, and bacterial cultures were assessed at 0, 3, and 6 h during treatment. System pressures and vital signs were recorded at 1 h intervals. Pathological examination was performed after death. ARF was successfully established, based on significant elevation of biochemical indexes and pathological examination. The treatment group had significantly reduced biochemical indexes relative to the control group. Measurement of blood endotoxins and aerobic and anaerobic bacteria cultures indicated no bacterial growth. The system pressures and vital signs were stable during treatment. The results indicate that our support system for the treatment of cynomolgus monkeys with surgery-induced acute renal failure is safe and effective.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have