Abstract

Light cycles and predatory threat define activity patterns (e.g. feeding/sleeping, activity/rest) in most diurnal fish species. Artificial light at night (ALAN) may disrupt natural cycles and biochemical processes, a mismatch which can eventually reduce condition and fitness. We evaluate the separate and joint effects of ALAN and predator threat on metabolism within brain, liver and muscle tissue of a common, wild caught damselfish, blue green chromis (Chromis viridis). The effects of ALAN varied according to tissue type and predator exposure. In all tissues we observed changes in metabolic pathways associated with increased activity under continuous light (despite provision of shelter), specifically those associated with energy metabolism, cell signalling, responses to oxidative stress and markers of cellular damage. In both the brain and liver tissues, predator threat served to moderate the influence of ALAN on metabolic change, likely due to increased sheltering behaviour. However, no interaction of predator threat with ALAN was observed in metabolism of the muscle tissue. Our results highlight complex sub-acute effects of ALAN exposure on tissue specific and whole organism energy metabolism. Collectively these effects indicate that ALAN has significant scope to reduce fitness of coastal fishes and potentially threaten ecosystem services, but that these changes are highly complex and may be altered by biotic drivers of activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.