Abstract

BackgroundGlobal efforts toward the development and deployment of a vaccine for COVID-19 are rapidly advancing. To achieve herd immunity, widespread administration of vaccines is required, which necessitates significant cooperation from the general public. As such, it is crucial that governments and public health agencies understand public sentiments toward vaccines, which can help guide educational campaigns and other targeted policy interventions.ObjectiveThe aim of this study was to develop and apply an artificial intelligence–based approach to analyze public sentiments on social media in the United Kingdom and the United States toward COVID-19 vaccines to better understand the public attitude and concerns regarding COVID-19 vaccines.MethodsOver 300,000 social media posts related to COVID-19 vaccines were extracted, including 23,571 Facebook posts from the United Kingdom and 144,864 from the United States, along with 40,268 tweets from the United Kingdom and 98,385 from the United States from March 1 to November 22, 2020. We used natural language processing and deep learning–based techniques to predict average sentiments, sentiment trends, and topics of discussion. These factors were analyzed longitudinally and geospatially, and manual reading of randomly selected posts on points of interest helped identify underlying themes and validated insights from the analysis.ResultsOverall averaged positive, negative, and neutral sentiments were at 58%, 22%, and 17% in the United Kingdom, compared to 56%, 24%, and 18% in the United States, respectively. Public optimism over vaccine development, effectiveness, and trials as well as concerns over their safety, economic viability, and corporation control were identified. We compared our findings to those of nationwide surveys in both countries and found them to correlate broadly.ConclusionsArtificial intelligence–enabled social media analysis should be considered for adoption by institutions and governments alongside surveys and other conventional methods of assessing public attitude. Such analyses could enable real-time assessment, at scale, of public confidence and trust in COVID-19 vaccines, help address the concerns of vaccine sceptics, and help develop more effective policies and communication strategies to maximize uptake.

Highlights

  • The imminent availability of COVID-19 vaccines poses a pressing need to continually monitor and better understand public sentiments in order to develop baseline levels of confidence in them among the general public and enable the identification of early warning signals of loss in confidence [1]

  • Artificial intelligence–enabled social media analysis should be considered for adoption by institutions and governments alongside surveys and other conventional methods of assessing public attitude

  • Over half of the worldwide population, including approximately 70% the populations of the United Kingdom and the United States, are active social media users, and social media usage has significantly increased during the pandemic; for instance, Facebook usage increased by 37%

Read more

Summary

Introduction

The imminent availability of COVID-19 vaccines poses a pressing need to continually monitor and better understand public sentiments in order to develop baseline levels of confidence in them among the general public and enable the identification of early warning signals of loss in confidence [1]. This will help address the concerns of vaccine sceptics [2,3,4] and develop the required public trust in immunization [5,6] to realize the goal of generating herd immunity [7]. It is crucial that governments and public health agencies understand public sentiments toward vaccines, which can help guide educational campaigns and other targeted policy interventions

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.