Abstract

Recently, research on the development of artificial intelligence (AI)-based computational toxicology models that predict toxicity without the use of animal testing has emerged because of the rapid development of computer technology. Various computational toxicology techniques that predict toxicity based on the structure of chemical substances are gaining attention, including the quantitative structure-activity relationship. To understand the recent development of these models, we analyzed the databases, molecular descriptors, fingerprints, and algorithms considered in recent studies. Based on a selection of 96 papers published since 2014, we found that AI models have been developed to predict approximately 30 different toxicity end points using more than 20 toxicity databases. For model development, molecular access system and extended-connectivity fingerprints are the most commonly used molecular descriptors. The most used algorithm among the machine learning techniques is the random forest, while the most used algorithm among the deep learning techniques is a deep neural network. The use of AI technology in the development of toxicity prediction models is a new concept that will aid in achieving a scientific accord and meet regulatory applications. The comprehensive overview provided in this study will provide a useful guide for the further development and application of toxicity prediction models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.