Abstract
Functional adrenal tumors (FATs) are mainly diagnosed by biochemical analysis. Traditional imaging tests have limitations and cannot be used alone to diagnose FATs. In this study, we aimed to establish an artificially intelligent diagnostic model based on computed tomography (CT) images to distinguish different types of FATs. A cohort study of 375 patients diagnosed with hyperaldosteronism (HA), Cushing's syndrome (CS), and pheochromocytoma in our center between March 2015 and June 2020 was conducted. Retrospectively, patients were randomly divided into three data sets: the training set (270 cases), the testing set (60 cases), and the retrospective trial set (45 cases). An artificially intelligent diagnostic model based on CT images was established by transferring data from the training set into the deep learning network. The testing set was then used to evaluate the accuracy of the model compared to that of physicians' judgments. The retrospective trial set was used to evaluate the quantification and distinction performance. The deep learning model achieved an average area under the receiver operating characteristic (ROC) curve (AUC) of 0.915, and the AUCs in all three FAT types were greater than 0.882. The AUC of the model tested on the retrospective dataset reached above 0.849. In the quantitative evaluation of tumor lesion area recognition, the diagnostic model also obtained a segmentation Dice coefficient of 0.69. With the help of the proposed model, clinicians reached 92.5% accuracy in distinguishing FATs, compared to 80.6% accuracy when using only their judgment (P<0.05). The result of our study shows that the diagnostic model based on a deep learning network can distinguish and quantify three common FAT types based on texture features of contrast-enhanced CT images. The model can quantify and distinguish functional tumors without any endocrine tests and can assist clinicians in the diagnostic procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.