Abstract
Background and ObjectiveA high degree of lymphocyte infiltration is related to superior outcomes amongst patients with lung adenocarcinoma. Recent evidence indicates that the spatial interactions between tumours and lymphocytes also influence the anti-tumour immune responses, but the spatial analysis at the cellular level remains insufficient. MethodsWe proposed an artificial intelligence-quantified Tumour-Lymphocyte Spatial Interaction score (TLSI-score) by calculating the ratio between the number of spatial adjacent tumour-lymphocyte and the number of tumour cells based on topology cell graph constructed using H&E-stained whole-slide images. The association of TLSI-score with disease-free survival (DFS) was explored in 529 patients with lung adenocarcinoma across three independent cohorts (D1, 275; V1, 139; V2, 115). ResultsAfter adjusting for pTNM stage and other clinicopathologic risk factors, a higher TLSI-score was independently associated with longer DFS than a low TLSI-score in the three cohorts [D1, adjusted hazard ratio (HR), 0.674; 95% confidence interval (CI) 0.463–0.983; p = 0.040; V1, adjusted HR, 0.408; 95% CI 0.223–0.746; p = 0.004; V2, adjusted HR, 0.294; 95% CI 0.130–0.666; p = 0.003]. By integrating the TLSI-score with clinicopathologic risk factors, the integrated model (full model) improves the prediction of DFS in three independent cohorts (C-index, D1, 0.716 vs. 0.701; V1, 0.666 vs. 0.645; V2, 0.708 vs. 0.662) ConclusionsTLSI-score shows the second highest relative contribution to the prognostic prediction model, next to the pTNM stage. TLSI-score can assist in the characterising of tumour microenvironment and is expected to promote individualized treatment and follow-up decision-making in clinical practice.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have