Abstract
The main objective of the current endeavor is to monitor hypothetical processes utilizing a Sisko tri-hybrid fluid over a rotating disk with entropy generation suspended in Darcy-Forchheimer porous medium. Electro Magneto Hydro Dynamics (EMHD), non-linear thermal radiation and exponential and thermal- space dependent heat source/sink coefficients are considered with the intent of conceiving an Runge-Kutta-Fehlberg method with shooting procedures integrated with a combination of an Adaptive Neuro-Fuzzy Inference System (ANFIS) and Reptile Search Algorithm (RSA). Then, ANFIS-RSA, is used to predict the Nusselt number, skin friction co-efficient in radial and tangential velocities. Reliable self-similarity variables have reduced a non-linear partial differential set of equations into an ordinary differential equation. According to the empirical evidence, Sisko fluid parameter rises the radial velocity whereas for magnetic field and Darcy-Forchheimer the azimuthal and axial velocities visualizations decreasing trend, respectively. The entropy generation and Bejan number rises for electric and radiation effects. Also, ANFIS-RSA indicates that the model attained a high level of precision in terms of radial velocity (98.13%), tangential velocity (98.18%) and Nusselt number (98.91%). Thus, the longer rendering of the nanoparticles used here might, makes them potentially helpful for regulating the therapeutic impact in the management and treatment of cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.