Abstract
BackgroundThe influence of computed tomography (CT) reconstruction algorithms on the performance of machine-learning-based CT-derived fractional flow reserve (CT-FFRML) has not been investigated. CT-FFRML values and processing time of two reconstruction algorithms were compared using an on-site workstation. MethodsCT-FFRML was computed on 40 coronary CT angiography (CCTA) datasets that were reconstructed with both iterative reconstruction in image space (IRIS) and filtered back-projection (FBP) algorithms. CT-FFRML was computed on a per-vessel and per-segment basis as well as distal to lesions with ≥50% stenosis on CCTA. Processing times were recorded. Significant flow-limiting stenosis was defined as invasive FFR and CT-FFRML values ≤ 0.80. Pearson's correlation, Wilcoxon, and McNemar statistical testing were used for data analysis. ResultsPer-vessel analysis of IRIS and FBP reconstructions demonstrated significantly different CT-FFRML values (p ≤ 0.05). Correlation of CT-FFRML values between algorithms was high for the left main (r = 0.74), left anterior descending (r = 0.76), and right coronary (r = 0.70) arteries. Proximal and middle segments showed a high correlation of CT-FFRML values (r = 0.73 and r = 0.67, p ≤ 0.001, respectively), despite having significantly different averages (p ≤ 0.05). No difference in diagnostic accuracy was observed (both 81.8%, p = 1.000). Of the 40 patients, 10 had invasive FFR results. Per-lesion correlation with invasive FFR values was moderate for IRIS (r = 0.53, p = 0.117) and FBP (r = 0.49, p = 0.142). Processing time was significantly shorter using IRIS (15.9 vs. 19.8 min, p ≤ 0.05). ConclusionCT reconstruction algorithms influence CT-FFRML analysis, potentially affecting patient management. Additionally, iterative reconstruction improves CT-FFRML post-processing speed.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have