Abstract
The importance of deep learning has heralded transforming changes across different technological domains, not least in the enhancement of robotic arm functionalities of object detection’s and grasping. This paper is aimed to review recent and past studies to give a comprehensive insight to focus in exploring cutting-edge deep learning methodologies to surmount the persistent challenges of object detection and precise manipulation by robotic arms. By integrating the iterations of the You Only Look Once (YOLO) algorithm with deep learning models, our study not only advances the innovations in robotic perception but also significantly improves the accuracy of robotic grasping in dynamic environments. Through a comprehensive exploration of various deep learning techniques, we introduce many approaches that enable robotic arms to identify and grasp objects with unprecedented precision, thereby bridging a critical gap in robotic automation. Our findings demonstrate a marked enhancement in the robotic arm’s ability to adapt to and interact with its surroundings, opening new avenues for automation in industrial, medical, and domestic applications. The impact of this research extends lays the groundwork for future developments in robotic autonomy, offering insights into the integration of deep learning algorithms with robotic systems. This also serves as a beacon for future research aimed at fully unleashing the potential of robots as autonomous agents in complex, real-world settings.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have