Abstract
This study aimed to use artificial intelligence (AI) to predict the pathological diagnosis of ovarian tumors using patient information and data from preoperative examinations. A total of 202 patients with ovarian tumors were enrolled, including 53 with ovarian cancer, 23 with borderline malignant tumors, and 126 with benign ovarian tumors. Using 5 machine learning classifiers, including support vector machine, random forest, naive Bayes, logistic regression, and XGBoost, we derived diagnostic results from 16 features, commonly available from blood tests, patient background, and imaging tests. We also analyzed the importance of 16 features on the prediction of disease. The highest accuracy was 0.80 in the machine learning algorithm of XGBoost. The evaluation of importance of the features showed different results among the correlation coefficient of the features, the regression coefficient, and the features importance of random forest. AI could play a role in the prediction of pathological diagnosis of ovarian cancer from preoperative examinations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.