Abstract

Crohn’s-like lymphoid reaction (CLR) and tumor-infiltrating lymphocytes (TILs) are crucial for the host antitumor immune response. We proposed an artificial intelligence (AI)-based model to quantify the density of TILs and CLR in immunohistochemical (IHC)-stained whole-slide images (WSIs) and further constructed the CLR-I (immune) score, a tissue level- and cell level-based immune factor, to predict the overall survival (OS) of patients with colorectal cancer (CRC). The TILs score and CLR score were obtained according to the related density. And the CLR-I score was calculated by summing two scores. The development (Hospital 1, N = 370) and validation (Hospital 2 & 3, N = 144) cohorts were used to evaluate the prognostic value of the CLR-I score. The C-index and integrated area under the curve were used to assess the discrimination ability. A higher CLR-I score was associated with a better prognosis, which was identified by multivariable analysis in the development (hazard ratio for score 3 vs score 0 = 0.22, 95% confidence interval 0.12–0.40, P < 0.001) and validation cohort (0.21, 0.05–0.78, P = 0.020). The AI-based CLR-I score outperforms the single predictor in predicting OS which is objective and more prone to be deployed in clinical practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.