Abstract

Early-stage detection of chronic kidney disease (CKD) is crucial in research to enable timely intervention, enhance understanding of disease progression, reduce healthcare costs and support public health initiatives. The traditional approaches on early-stage chronic kidney disease detection often suffer from slow convergence and not integrate advanced technologies, impacting their effectiveness. Additionally, security and privacy concerns related to patient data are ineffectively addressed. To overcome these issues, this research incorporates novel optimized artificial intelligence-based approaches. The main aim is to enhance detection process through enhanced hybrid mud ring network (EHMRN), a novel detection technique combining light gradient boosting machine and MobileNet, involving extensive data collection, including a large dataset of 100,000 instances. The introduced network is optimized through the mud ring optimization to attain enhanced performance. Incorporating spark ensures secure cloud-based storage, enhancing privacy and compliance with healthcare data regulations. This approach represents a significant advancement in primary stage detection more effectively and promptly. The results show that the introduced approach outperforms traditional approaches in terms of accuracy (99.96%), F1-score (99.91%), precision (100%), specificity (99.98%), recall (100%) and execution time (0.09 s).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.