Abstract

Breast ultrasound is used in a wide variety of clinical scenarios, including both diagnostic and screening applications. Limitations of ultrasound, however, include its low specificity and, for automated breast ultrasound screening, the time necessary to review whole-breast ultrasound images. As of this writing, four AI tools that are approved or cleared by the FDA address these limitations. Current tools, which are intended to provide decision support for lesion classification and/or detection, have been shown to increase specificity among non-specialists and to decrease interpretation times. Potential future applications include triage of patients with palpable masses in low-resource settings, preoperative prediction of axillary lymph node metastasis, and preoperative prediction of neoadjuvant chemotherapy response. Challenges in the development and clinical deployment of AI for ultrasound include: the limited availability of curated training datasets compared to mammography; the high variability in ultrasound image acquisition due to equipment- and operator-related factors (which may limit algorithm generalizability); and the lack of post-implementation evaluation studies. Furthermore, current AI tools for lesion classification were developed based on 2D data, but diagnostic accuracy could potentially be improved if multimodal ultrasound data were used, such as color Doppler, elastography, cine clips, and 3D imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.