Abstract

Cervical cancer is a significant global health issue, its prevalence and prognosis highlighting the importance of early screening for effective prevention. This research aimed to create and validate an artificial intelligence cervical cancer screening (AICCS) system for grading cervical cytology. The AICCS system was trained and validated using various datasets, including retrospective, prospective, and randomized observational trial data, involving a total of 16,056 participants. It utilized two artificial intelligence (AI) models: one for detecting cells at the patch-level and another for classifying whole-slide image (WSIs). The AICCS consistently showed high accuracy in predicting cytology grades across different datasets. In the prospective assessment, it achieved an area under curve (AUC) of 0.947, a sensitivity of 0.946, a specificity of 0.890, and an accuracy of 0.892. Remarkably, the randomized observational trial revealed that the AICCS-assisted cytopathologists had a significantly higher AUC, specificity, and accuracy than cytopathologists alone, with a notable 13.3% enhancement in sensitivity. Thus, AICCS holds promise as an additional tool for accurate and efficient cervical cancer screening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.