Abstract
Abstract Aims Augmenting echocardiography with artificial intelligence would allow for automated assessment of routine parameters and identification of disease patterns not easily recognized otherwise. View classification is an essential first step before deep learning can be applied to the echocardiogram. Methods and results We trained two- and three-dimensional convolutional neural networks (CNNs) using transthoracic echocardiographic (TTE) studies obtained from 909 patients to classify nine view categories (10 269 videos). Transthoracic echocardiographic studies from 229 patients were used in internal validation (2582 videos). Convolutional neural networks were tested on 100 patients with comprehensive TTE studies (where the two examples chosen by CNNs as most likely to represent a view were evaluated) and 408 patients with five view categories obtained via point-of-care ultrasound (POCUS). The overall accuracy of the two-dimensional CNN was 96.8%, and the averaged area under the curve (AUC) was 0.997 on the comprehensive TTE testing set; these numbers were 98.4% and 0.998, respectively, on the POCUS set. For the three-dimensional CNN, the accuracy and AUC were 96.3% and 0.998 for full TTE studies and 95.0% and 0.996 on POCUS videos, respectively. The positive predictive value, which defined correctly identified predicted views, was higher with two-dimensional rather than three-dimensional networks, exceeding 93% in apical, short-axis aortic valve, and parasternal long-axis left ventricle views. Conclusion An automated view classifier utilizing CNNs was able to classify cardiac views obtained using TTE and POCUS with high accuracy. The view classifier will facilitate the application of deep learning to echocardiography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.