Abstract

Genetic mutations are critical factors leading to congenital surgical diseases and can be identified through genomic analysis. Early and accurate identification of genetic mutations underlying these conditions is vital for clinical diagnosis and effective treatment. In recent years, artificial intelligence (AI) has been widely applied for analyzing genomic data in various clinical settings, including congenital surgical diseases. This review paper summarizes current state-of-the-art AI-based approaches used in genomic analysis and highlighted some successful applications that deepen our understanding of the etiology of several congenital surgical diseases. We focus on the AI methods designed for the detection of different variant types and the prioritization of deleterious variants located in different genomic regions, aiming to uncover susceptibility genomic mutations contributed to congenital surgical disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.