Abstract

The acquisition of whole slide images is prone to artifacts that can require human control and re-scanning, both in clinical workflows and in research-oriented settings. Quality control algorithms are a first step to overcome this challenge, as they limit the use of low quality images. Developing quality control systems in histopathology is not straightforward, also due to the limited availability of data related to this topic. We address the problem by proposing a tool to augment data with artifacts. The proposed method seamlessly generates and blends artifacts from an external library to a given histopathology dataset. The datasets augmented by the blended artifacts are then used to train an artifact detection network in a supervised way. We use the YOLOv5 model for the artifact detection with a slightly modified training pipeline. The proposed tool can be extended into a complete framework for the quality assessment of whole slide images.Clinical relevance- The proposed method may be useful for the initial quality screening of whole slide images. Each year, millions of whole slide images are acquired and digitized worldwide. Numerous of them contain artifacts affecting the following AI-oriented analysis. Therefore, a tool operating at the acquisition phase and improving the initial quality assessment is crucial to increase the performance of digital pathology algorithms, e.g., early cancer diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.