Abstract

This study demonstrates the in vitro displacement and strain of articular cartilage in a cyclically-compressed and intact joint using displacement-encoded imaging with stimulated echoes (DENSE) and fast spin echo (FSE). Deformation and strain fields exhibited complex and heterogeneous patterns. The displacements in the loading direction ranged from -1688 to -1481 microm in the tibial cartilage and from -1601 to -764 microm in the femoral cartilage. Corresponding strains ranged from -9.8% to 0.7% and from -4.3% to 0.0%. The displacement and strain precision were determined to be 65 microm and less than 0.2%, respectively. Displacement-encoded magnetic resonance imaging is capable of determining the nonuniform displacements and strains in the articular cartilage of an intact joint to a high precision. Knowledge of these nonuniform strains is critical for the in situ characterization of normal and diseased tissue, as well as the comprehensive evaluation of repair constructs designed using regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.