Abstract

Objective: Pulse wave velocity (PWV) and aortic augmentation index (AI) are indicators of arterial stiffness. Pulse wave reflection and arterial stiffness are related to cardiovascular events and sickle cell disease. However, the effect of these parameters on the heterozygous sickle cell trait (HbAS) is unknown. The aim of this study is to evaluate the arterial stiffness and wave reflection in young adult heterozygous sickle cell carriers.Materials and Methods: We enrolled 40 volunteers (20 HbAS cases, 20 hemoglobin AA [HbAA] cases) aged between 18 and 40 years. AI and PWV values were measured by arteriography.Results: Aortic blood pressure, aortic AI, and brachial AI values were significantly higher in HbAS cases compared to the control group (HbAA) (p=0.033, 0.011, and 0.011, respectively). A statistically significant positive correlation was found between aortic pulse wave velocity and mean arterial pressure, age, aortic AI, brachial AI, weight, and low-density lipoprotein levels (p=0.000, 0.017, 0.000, 0.000, 0.034, and 0.05, respectively) in the whole study population. Aortic AI and age were also significantly correlated (p=0.026). In addition, a positive correlation between aortic PWV and systolic blood pressure and a positive correlation between aortic AI and mean arterial pressure (p=0.027 and 0.009, respectively) were found in HbAS individuals. Our study reveals that mean arterial pressure and heart rate are independent determinants for the aortic AI. Mean arterial pressure and age are independent determinants for aortic PWV. Conclusion: Arterial stiffness measurement is an easy, cheap, and reliable method in the early diagnosis of cardiovascular disease in heterozygous sickle cell carriers. These results may depend on the amount of hemoglobin S in red blood cells. Further studies are required to investigate the blood pressure changes and its effects on arterial stiffness in order to explain the vascular aging mechanism in the HbAS trait population. Conflict of interest:None declared.

Highlights

  • Sickle cell disease (SCD) affects many systems as it is a chronic and hemolytic autosomal recessive disease

  • Aortic blood pressure, aortic augmentation index (AI), and brachial AI values were significantly higher in HbAS cases compared to the control group (HbAA) (p=0.033, 0.011, and 0.011, respectively)

  • A statistically significant positive correlation was found between aortic pulse wave velocity and mean arterial pressure, age, aortic AI, brachial AI, weight, and low-density lipoprotein levels (p=0.000, 0.017, 0.000, 0.000, 0.034, and 0.05, respectively) in the whole study population

Read more

Summary

Introduction

Sickle cell disease (SCD) affects many systems as it is a chronic and hemolytic autosomal recessive disease. Arterial stiffness causes a faster reflection of the forward pulse wave from bifurcation points in peripheral vessels. The role of arterial stiffness and wave reflection has been established in many studies [3,4]. The relationship between SCD and pulse wave reflection causing stroke has been demonstrated [5]. These vascular complications develop as a result of microvascular occlusion by dense and rigid sickle cells [6]. If the change of wave reflection and arterial stiffness are related to cardiovascular events, there is a need for more investigations within sickle cell populations. In this study we investigated the relationship between carriers of heterozygous sickle cell (HbAS) and arterial stiffness parameters

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.