Abstract

We tested the hypothesis that carotid artery stiffening with ageing is associated with transforming growth factor-β1 (TGF-β1)-related increases in adventitial collagen and reductions in medial elastin, which would be reversed by voluntary aerobic exercise. Ex vivo carotid artery incremental stiffness was greater in old (29–32 months, n = 11) vs. young (4–7 months, n = 8) cage control B6D2F1 mice (8.84 ± 1.80 vs. 4.54 ± 1.18 AU, P < 0.05), and was associated with selective increases in collagen I and III and TGF-β1 protein expression in the adventitia (P < 0.05), related to an increase in smooth muscle α-actin (SMαA) (myofibroblast phenotype) (P < 0.05). In cultured adventitial fibroblasts, TGF-β1 induced increases in superoxide and collagen I protein (P < 0.05), which were inhibited by Tempol, a superoxide dismutase. Medial elastin was reduced with ageing, accompanied by decreases in the pro-synthetic elastin enzyme, lysyl oxidase, and increases in the elastin-degrading enzyme, matrix metalloproteinase 2. Fibronectin was unchanged with ageing, but there was a small increase in calcification (P < 0.05). Increased incremental stiffness in old mice was completely reversed (3.98 ± 0.34 AU, n = 5) by 10–14 weeks of modest voluntary wheel running (1.13 ± 0.29 km day−1), whereas greater voluntary wheel running (10.62 ± 0.49 km day−1) had no effect on young mice. The amelioration of carotid artery stiffness by wheel running in old mice was associated with reductions in collagen I and III and TGF-β1, partial reversal of the myofibroblast phenotype (reduced SMαA) and reduced calcification (all P < 0.05 vs. old controls), whereas elastin and its modulating enzymes were unaffected. Adventitial TGF-β1-related oxidative stress may play a key role in collagen deposition and large elastic artery stiffening with ageing and the efficacious effects of voluntary aerobic exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.