Abstract
PurposeTo develop an arterial spin labeling (ASL) perfusion imaging method with balanced steady-state free precession (bSSFP) readout and radial sampling for improved SNR and robustness to motion and off-resonance effects. MethodsAn ASL perfusion imaging method was developed with pseudo-continuous arterial spin labeling (pCASL) and bSSFP readout. Three-dimensional (3D) k-space data were collected in segmented acquisitions following a stack-of-stars sampling trajectory. Multiple phase-cycling technique was utilized to improve the robustness to off-resonance effects. Parallel imaging with sparsity-constrained image reconstruction was used to accelerate imaging or increase the spatial coverage. ResultsASL with bSSFP readout showed higher spatial and temporal SNRs of the gray matter perfusion signal compared to those from spoiled gradient-recalled acquisition (SPGR). Cartesian and radial sampling schemes showed similar spatial and temporal SNRs, regardless of the imaging readout. In case of severe B0 inhomogeneity, single-RF phase incremented bSSFP acquisitions showed banding artifacts. These artifacts were significantly reduced when multiple phase-cycling technique (N = 4) was employed. The perfusion-weighted images obtained by the Cartesian sampling scheme showed respiratory motion-related artifacts when a high segmentation number was used. The perfusion-weighted images obtained by the radial sampling scheme did not show these artifacts. Whole brain perfusion imaging was feasible in 1.15 min or 4.6 min for cases without and with phase-cycling (N = 4), respectively, using the proposed method with parallel imaging. ConclusionsThe developed method allows non-invasive perfusion imaging of the whole-brain with relatively high SNR and robustness to motion and off-resonance effects in a practically feasible imaging time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.