Abstract
Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) could be helpful to separate true disease progression from pseudo-progression in brain metastases when assessing the need for retreatment. However, the selection of arterial input functions (AIFs) is not standardized for analysis, limiting its use for this application. To compare population-based AIFs, AIFs specific to each patient, and AIFs specific to every visit in the longitudinal follow-up of brain metastases. Longitudinal data were collected from eight patients before treatment (6 of 8 patients) and after treatment (6-17 visits). Imaging was performed using a 1.5-T MRI system. Lesions were segmented by subtracting precontrast images from postcontrast images. Cerebral blood volume (rCBV) and cerebral blood flow (rCBF) were computed, and Pearson's product moment correlation coefficients were calculated to evaluate similarity of DSC parameters dependent on various AIF choices across time. AIF shape characteristics were compared. Parameter differences between white matter (WM) and gray matter (GM) were obtained to determine which AIF choice maximizes tissue differentiation. Although DSC parameters follow similar patterns in time, the various AIF selections cause large parameter variations with relative standard deviations of up to ±60%. AIFs sampled in one patient across sessions more similar in shape than AIFs sampled across patients. Estimates of rCBV based on scan-specific AIFs differentiated better between perfusion in WM and GM than patient-specific or population-based AIFs (P ≤ 0.02). Results indicate that scan-specific AIFs are the best choice for DSC-MRI parameter estimations in the longitudinal follow-up of brain metastases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have