Abstract

Many cardiovascular models involve prediction of changes that occur when a subject is perturbed in some way, to move from one state to another. A successful, predictive model should involve at least two elements: First, the model should include some index of the intensity of the perturbation that elicits the response; effective responses should, in some fashion, be linearly or nonlinearity related to perturbations. Second, the model should factor in subjects' abilities to meet the challenges posed by the perturbations. This review indicates that these two basic components of a successful model may be difficult to incorporate. In the simple case of passive upright tilt, blood pressure measurements may not accurately indicate the stimulus, because blood pressure reductions are reversed by rapidly occurring reflex blood pressure increases. Since not all subject populations respond identically to hemodynamic challenges, it also may be important to characterize baroreflex responsiveness, and include such a term in a model. Although vagal and sympathetic baroreflex responses to stereotyped challenges can be measured accurately, recent research points to extraordinary variability of baroreflex responsiveness. The complexities discussed in this review should be considered, whether they are, or even can be incorporated into cardiovascular models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.